Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

نویسندگان

  • Daniel Aguilar-Hidalgo
  • M. Carmen Lemos
  • Antonio C'ordoba
چکیده

During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anteroposterior patterning of Drosophila ocelli requires an anti-repressor mechanism within the hh pathway mediated by the Six3 gene Optix.

In addition to compound eyes, most insects possess a set of three dorsal ocelli that develop at the vertices of a triangular cuticle patch, forming the ocellar complex. The wingless and hedgehog signaling pathways, together with the transcription factor encoded by orthodenticle, are known to play major roles in the specification and patterning of the ocellar complex. Specifically, hedgehog is r...

متن کامل

Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster

Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system.  Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

Understanding the Structural and Developmental Aspect of Simple Eye of Drosophila: The Ocelli

Among various photoreceptors present in arthropods Drosophila eye undergoes certain modification to provide high resolution and sensitivity to the animal. Along with the compound eye Drosophila possess three ocelli for its vision, navigation and locomotion purpose. These ocelli are arranged in a triangular manner in between the compound eye. During third instar larvae, from the eye antenna imag...

متن کامل

Towards a study of gene regulatory constraints to morphological evolution of the Drosophila ocellar region

The morphology and function of organs depend on coordinated changes in gene expression during development. These changes are controlled by transcription factors, signaling pathways and their regulatory interactions, which are represented by gene regulatory networks (GRNs). Therefore, the structure of an organ GRN restricts the morphological and functional variations that the organ can experienc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014